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SUMMARY 
The reduced Navier-Stokes and thin layer approximations to the Navier-Stokes equations are used to 
obtain solutions for viscous subsonic three-dimensional flows. A spatial marching method is combined with 
a direct sparse matrix solver to obtain successive solutions in a global relaxation process. Results have been 
obtained for flow fields with and without regions of flow reversal. 
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1. INTRODUCTION 

Calculation of viscous subsonic flow-fields about three-dimensional geometries are generally 
carried out by solution of the full Navier-Stokes (NS) equations. In general, three-dimensional 
solvers encounter many difficulties associated with the choice of difference scheme, the method of 
solution, the degree of coupling of the dependent variables and the manner in which the boundary 
conditions are satisfied.' Recent research efforts have focused on the reduced (RNS) or thin layer 
(TL) approximations to the full equations to obtain solutions for three-dimensional configur- 
ations. It is well established from work with two-dimensional flows that in many cases, for large- 
Reynolds-number flows, the RNS and TL equations produce results comparable with the full 
equations, but offer several major advantages,'-' e.g. reduced computer storage, a simple 
boundary-layer-like solution procedure, only an outflow boundary condition on pressure, and 
location of the computational boundaries closer to the regidn of strong pressure interaction. 

The RNS equations are derived by order-of-magnitude or perturbation analysis of the NS 
equations and are applicable to high-Reynolds-number flows with a dominant flow direction. It 
must be emphasized that the RNS model, although introduced as an asymptotic approximation, 
can be utilized to solve the full NS equations where the discarded terms are retained via a deferred 
corrector approach. These equations represent a composite of the Euler and boundary layer 
assumptions in a single system of equations. Inclusion of the normal (y) inviscid momentum 
equation and the streamwise pressure gradient P, provide a consistent mechanism for 
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viscous-inviscid interaction. In corner regions or for internal flows, cross-flow diffusion in the 
normal momentum equation can also become important and must be included. 

In view of the structure of the equations, the RNS system has been confused with the more 
commonly known parabolized Navier-Stokes (PNS) system. It must be pointed out that for 
subsonic flows, the RNS system is elliptic. The ellipticity arises through the interacting axial 
pressure gradient. Solution of the RNS system as an initial value problem, using marching 
techniques, yields departure solutions. Lubard and Helliwel16 show that the process requires the 
streamwise marching step size Ax to be larger than some minimum size, which Rubin and Lin2 
have shown is proportional to the thickness of the subsonic layer. This would be the entire normal 
extent of the flow field for fully subsonic flows. This step size limitation is removed if the unknown 
pressure gradient term is discarded. In order to obtain solutions where this term is retained, the 
elliptic character of the governing equations must be reflected in the discretization. As shown by 
Rubin' or Rubin and Liq2 the axial pressure gradient should be forward or flux differenced so 
that a downstream boundary condition on pressure needs to be prescribed. With this for- 
mulation, a marching procedure is embedded within a global pressure relaxation technique. This 
allows propagation of upstream influence in the flow field to be taken into account. In regions of 
attached flow, only the pressure need be stored globally. Regions of separated flow require 
storage of the streamwise and cross-flow velocity components as well. This can be extremely 
important for three-dimensional flows, where storage requirements must be minimized. 

The relaxation process involves calculation of solutions on successive cross-planes and 
updating of the global pressure field. Global iteration is governed entirely by the pressure 
solution. The flow velocities are regenerated for each global solution pass. In two dimensions this 
technique has been applied to many flows, including complex configurations with large longitudi- 
nal curvature, mixing shear layers, large regions of separated flow, base flows and jet interaction. 
In three dimensions Raven and Hoekstra' have solved the RNS equations for the flow about a 
ship stern. Rosenfeld et al.' have also developed a similar procedure using reduced equations to 
calculate the flow field about prolate spheroids at angle of attack. Additional cross-flow 
numerical viscosity is added to the equations in Reference 8. 

In the present paper the RNS equations have been formulated to solve the flow about various 
three-dimensional configurations. Section 2 describes the governing equations, the discretization 
schemes and the solution method. In Secion 3 solutions are shown for a finite edge flat plate, the 
flow along an axial corner and the flow over a trigonometric bump. 

2. GOVERNING EQUATIONS AND SOLUTION PROCEDURE 

The incompressible forms of the RNS equations are appropriately non-dimensionalized and 
written in primitive variables for the continuity and three momentum equations. The dominant 
flow is assumed to be in the x direction. The cross-plane is defined by y and z. 

Continuity 

x (streamwise) momentum 

u, + u, + w, = 0, 

1 
P x  + uu, + vu, + wu, = - Re [u,, + u,,], 

y-momentum 
1 

Py + uu, + VU, + wv, = - Re [u,, + v,,], 
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z-momentum 

1 
pz + uw, + owy + ww, = - Re [w,, + w,,], 

where u is the streamwise velocity component, u and w are the secondary velocity components, P 
is the pressure and Re is the Reynolds number. The left-hand side of the above system represents 
the Euler equations. If the right-hand side of the y-momentum equation is omitted, then the 
resulting system is the RNS equations applicable to flows over a surface with a predominant 
normal direction. These terms need to be retained for corner-type geometries where there is no 
single normal direction. The boundary region (BR) equations can be obtained by prescribing the 
pressure and omitting the convective and viscous terms in the y-momentum equation. The 
boundary region equations represent a generalization of the three-dimensional boundary layer 
equations for flows over geometries with large transverse curvature where cross-flow diffusion 
plays an important role. These equations can predict secondary flow separation, but they cannot 
account for axial separation. 

2.1. Discretization and boundary conditions 

Two discretizations of the governing equations are used. The choice depends on the flow 
geometry. 

Corner geometries. For axial corner-type geometries we retain Cartesian co-ordinates rather 
than use a mapping to a flat geometry. This choice was based on the fact that a clustered 
Cartesian grid produces maximum resolution in the corner, which is the region of interest. -An 
orthogonal mapping, regardless of clustering, will tend to lose resolution in the corner. In 
Cartesian co-ordinates there is no predominant normal direction. Both the y- and z-momentum 
equations must retain viscous terms. The continuity equation is differenced at (i, j - i, k - f). The 
y-momentum equation is differenced at (i, j + 4, k) and the z-momentum equation at hi, j ,  k + i). 
The streamwise momentum equation is differenced at (i,j, k). Pressure can be solved for on both 
walls; continuity provides u on the far field y-boundary and w on the far field z-boundary. At the 
far field corner point, u and P are prescribed, while continuity and a zero-vorticity condition 
aw/ay - &/az = 0 are used to find u and w. The streamwise pressure gradient is set to zero at the 
downstream boundary. The boundary conditions for corner geometries are illustrated in 
Figure 1. 

Other geometries. For geometries where the wall layer is predominantly normal to one co- 
ordinate direction, no viscous terms need be included in the normal ( y) momentum equation. The 
continuity equation is differenced at grid location ( i , j  - 3, k). The streamwise (x) and cross-flow (z) 
momentum equations are differenced at location (i, j ,  k). All y- and z-derivatives in these 
equations are central differenced, while the term P, is forward differenced. A general interpret- 
ation of this can be found in Reference 3. All other x-derivatives are backward differenced. The 
normal (y) momentum equation is differenced at ( i , j  + b, k). The half-point differencing allows the 
continuity equation to be solved on the outer normal boundary to obtain u. The y-momentum 
equation can be solved at the body surface to obtain the pressure. At the downstream boundary 
the streamwise pressure gradient is set to zero. Figure 2 shows the boundary conditions for these 
configurations. 
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Figure 1 .  Boundary conditions for comer geometries 
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Figure 2. Boundary conditions for other geometries 

2.2. Reversed jlows 

When the streamwise velocity u becomes negative, the above differencing schemes become 
unstable. For twodimensional flows, forward differencing of the convective term u(u), in the 
streamwise momentum equation will stabilize the system. For three-dimensional systems, the 
convective term u(w), in the cross-flow momentum equation must also be forward or flux 
differenced. Even with flux differencing, the solution has been sensitive to initial conditions. To 
decrease this sensitivity, temporal terms are added to the streamwise and cross-flow momentum 
equations. These are rewritten as; 

x (streamwise) momentum 

u, + p, + u(u), + w, + w(u),  = vcu,, + u221, 
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z-momentum 

w, + P, + u(w), + u(w), + w(w), = vcw,, + W,J. 
Continuity and normal momentum equations remain unchanged. A At = loo0 is usually used 
when the initial pressure is prescribed from the inviscid solution. When the solution was partially 
converged, the time terms could be switched off and the relaxation process continued until a fully 
converged solution was attained. 

2.3. Method of solution 

The discretized equations are quasi-linearized. This results in a nine-point implicit scheme, on a 
grid where subscripts i, j ,  k refer to the x-, y- and z-direction respectively. The algebraic system is 
represented as 

a4?j - 1 k + b@yjk + @:j + I k  + d#jk - 1 + e#jk + 1 + qq#j - 1 k - 1 

+ rr(b!j+ l k -  1 + ss@:j- l k +  1 + tt4yj+ l k +  1 = rijk, 

where 

are the unknowns being solved for at global iteration number n. The coefficients a, b, c, d, e, qq, rr, 
ss and tt are 4 x 4 matrices. The right-hand side r is a vector of four elements, which consists of all 
known terms. Over an entire cross-plane this scheme produces a linear system, written in matrix 
form as 

A@: = R, 
where Q is a vector of a11 the unknowns 4 on the cross-plane at streamwise location x i ,  A is a 
matrix of all the coefficients and R is a vector of all right-hand side terms r. This system is solved 
directly using a modified version of the Yale sparse matrix solver. Without any local iteration, the 
resulting solution is accurate to the order of the discretization. 

Use of a direct solver was motivated by the need to solve a coupled set of equations. The 
solution technique should be as implicit as possible and also be robust. Previous experience with 
other implicit methods, such as the coupled strongly implicit (CSIP) method’ and modifications 
thereof,l0 were found to be prone to instability. These methods tended to diverge on local 
iteration unless severe marching step size restrictions were enforced. Raven and Hoekstra’ use a 
CSIP method in their calculations. They mention encountering convergence problems with the 
algorithm and so recommend enhancing the implicitness of the C U P  process. This is a step 
towards a ‘more direct’ type of solver. With the use of a direct solver, an entire cross-plane is 
solved non-iteratively in a single step. 

The solver used in the present work is the Yale sparse matrix package (YSMP).” It has been 
successfully used by Bender and Khosla” and Vanka and Leaf l 3  for solution of a wide range of 
two-dimensional problems. The package itself is an efficient set of programs for performing an 
LU decomposition of the coefficient matrix A. Only non-zero coefficients of the decomposition 
are stored. The non-zero elements in A are stored as a vector in row-wise order. An integer vector 
JA stores the column location of each element of A. Another integer vector IA contains the 
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starting position of each row in A. The solver requires at minimum that the main diagonal 
element of each row of A be non-zero. Reordering of the equations to minimize the amount of fill 
that is generated by the LU decomposition and tracking of the non-zeros are implicit in the 
package. This solver has been highly optimized for sparse matrices. Its storage requirement is less 
than that of any band or block solver. It does not require that the inverted matrix have any 
specific or regular structure. A more detailed description of the solver can be found in References 
1 1  and 12. 

Once a solution vector 0" is obtained, local iteration on the non-linearity can be performed 
before marching to the next cross-plane. This was found to be unnecessary, as the accuracy of the 
differencing and linearization is adequate for the global relaxation process. It was found that local 
iteration had a negligible effect on the global converged solution. When solution of a single cross- 
plane is obtained, the whole procedure is repeated for the next cross-plane. With completion of a 
single global pass, marching from upstream is restarted using the updated pressure field. This is 
continued until global convergence of the pressure field is achieved. 

\ .- '. 

3. RESULTS 

Comparison of the present results with experimental and other numerical solutions is limited. 
Current work has involved the development of a robust method that will be applicable to a wide 
range of prolems. Computer codes developed so far include viscous terms in all three momentum 
equations. Limited compressibility can be accounted for by varying the density according to an 
energy equation based on constant enthalpy. In some cases, refinement of finite difference grids 
would be required to capture all detail in the flow field. Convergence of the global relaxation 
process compares favourably with Rosenfeld kt a1.* Convergence histories for reversed and 
attached flows are depicted in Figures 3 and 4. To monitor convergence, the maximum change in 
the global pressure field has been used. 

3.1. Attachedpows 

Results for the flow along a streamwise corner and along a flat plate of finite span have been 
obtained. Typical streamwise velocity profiles can be seen in Figures 5 and 6. Comparison of the 
present corner flow results with the asymptotic corner layer solution by Rubin and GrossmanL4 
show a similar profile in the far field. In Figure 7 streamwise velocity profiles are plotted against 
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Figure 3. Convergence history: non-separated case 
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Figure 5. Streamwise velocity profile for an axial corner 

the non-dimensional normal co-ordinate q at several (-locations, where 

v = Y JRePx, ( = z JRe/2x. 

Streamwise velocity profiles for the finite plate are given in Figure 8, where comparison of the 
symmetry line profile to the Blasius solution'5 is shown. 
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Figure 6. Streamwise velocity profile for a finite span plate 
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Figure 7. Corner flow velocity profiles 

3.2. Separated JOWS 

Following work by Smith,16 Ramakrishnan and Rubin’ and the present authors” on two- 
dimensional sine wave aerofoils, a three-dimensional configuration was chosen (Figure 9). A sine 
wave aerofoil in the streamwise direction with a trigonometric thickness variation in the spanwise 
direction was used. The body shape was given by 

x < 0, 
0 < x < 1, 

x >  1, 
1 + sin [2n(x - $)I}, 
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Figure 8. Finite span plate velocity profiles 

X 

Figure 9. Three-dimensional bump configuration 

where TC is the thickness to chord ratio of a double-sided aerofoil. Spanwise variation was given 
by varying the thickness ratio TC in the z-direction: 

(TC, - TC,){ 1 + sin [K(z/z,, ++)I} + TC,, 0 < z < z,,, T C = {  Z > Zns, 
TC, 9 

where TC, is the thickness ratio at the root (z = 0) and TC, is the tip thickness ratio, which is 
constant from z = z,, to the outer span. A non-orthogonal transformation in the cross-plane and 
a shearing transformation in the streamwise direction were implemented. These mapped the 
physical domain onto a rectangular computational domain. 

The viscous flow field over this ‘bump’ configuration has a reversed flow bubble which 
decreases when moving from the symmetry line to the outer span. The bubble can be seen in 
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surface skin fraction contour plots (Figure 10). Also shown are skin friction curves at different 
spanwise locations (Figure 11). These are compared to the skin friction on a two-dimensional sine 
wave aerofoil. The three-dimensional flow on the symmetry line of the bump exhibited a less 
severe reversed flow region than the two-dimensional configuration. This is due to the cross-flow 
present in the three-dimensional situation. Typical velocity profiles at a streamwise location 
where there is separated flow are also shown (Figure 12). 



SUBSONIC SEPARATED AND NON-SEPARATED FLOWS 

6.00 

4.00 

3 3.00 
2.00 

BUMP Re=300000 
tcr=0.06 

1097 

Figure 12. Velocity profiles for bump 

4. COMPUTATION 

Computer time is dominated by the matrix LU decomposition. The YSMP requires a large work 
vector for use during the matrix LU decomposition. This means that the number of unknowns in 
a given problem, and hence the grid size, is restricted by the capacity of the computer being used. 
The length of this vector was found to be about ten times the number of non-zero terms in the 
matrix A for the present scheme. The computations have been run on grids with 61 points in the 
streamwise direction. The largest corner flow was calculated on a 24 x 24 grid, while a 51 x 31 
grid has been used for the other configurations. The corner flows were run on a personal 
computer with a Definicon DSI-68020 coprocessor board (20 MHz version) with four megabytes 
of internal memory. The number of unknowns was about 2300 (24 x 24 grid points with four 
unknowns at each point). Larger grids would still be solvable on the PC. For the larger cross- 
plane grids, a DEC Microvax 2 with 8 Mbytes of RAM was used. A CSPI 6420 array processor 
with 16 Mbytes of central memory is installed on this system. Without the array processor the 
computational speed of the PC is about 20% faster than the Microvax. A 21 x 21 system takes 
about 2.5 min for each cross-plane solution on the PC. The array processor runs about four times 
faster. Calculations for the bump configuration were performed on the Microvax with array 
processor. A cross-plane of 51 x 31 grid points (about 6OOO unknowns) required about 5.5 min 
per marching step. 

5. CONCLUSIONS 

The current method has enabled calculation of three-dimensional separated and attached flows. 
Addition of time derivative terms and flux switching the differencing of convective terms in the 
streamwise and cross-flow momentum equations, where the flow is recirculating, makes the 
solution technique suitably robust. Using this method it is possible to obtain three-dimensional 
solutions with limited computer facilities. 
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